## Chapter 4: Chemical Reactions

These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests!

To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

## Ionic Theory



Don't operate electrical equipment while standing in water. If the water were pure, ions would not flow.
1884 Arrhenius Ionic Theory of Solutions: Certain substances produce freely moving ions when dissolved in water and these IONS conduct an electric current in an aqueous solution.

NaCl put into water and a direct current applied. Sodium Chloride completely ionizes. The Positive Sodium Ions are attracted to the negative pole and the Negative Chloride Ions to the positive pole. This solution then conducts electricity.


Electrolyte - substance that dissolves in water to give an electrically conductive solution. E.g. NaCl Most Ionic Solids that dissolve in water are electrolytes.

Not all Electrolytes are Ionic Substances. HCl is not an Ionic Solid, it is a Molecular Substance or a Non Ionic Solid Compound, but ionizes to $\mathrm{H}^{+}$and $\mathrm{Cl}^{-}$almost completely.

NonElectrolyte is a substance that dissolves in water to give a nonconducting or poorly conducting solution. Methanol $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is one.

Experiment to show the conduction of electricity. Put 2 electrodes into water and attach to a battery and to a light bulb. Bulb will light if electricity is flowing.


Strong Electrolyte - an electrolyte that exists in solution almost entirely as ions -NaCl

$$
\mathrm{NaCl}_{\text {solid }} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

Weak Electrolyte - an electrolyte that dissolves in water to give a relatively small percentage of ions

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{3 \%}{\underset{\leftarrow}{\leftarrow}} \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad \text { Double Arrow }=\text { Reversible Reaction }
$$

Most water soluble substances are non or weak electrolytes.
Most Weak electrolytes are Molecular Substances and not Ionic.
Solubility - ability do dissolve in water. Solubility Rules for Ionic Compounds [ Table 4.2]
STUDENTS MUST MEMORIZE THESE
\# $\quad$ Applies to

1. $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$
2. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, \mathrm{NO}_{3}^{-}$
3. $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
4. $\mathrm{SO}_{4}{ }^{-2}$
5. $\mathrm{CO}_{3}{ }^{-2}$
6. $\mathrm{PO}_{4}{ }^{-3}$
7. $\mathrm{S}^{-2}$
8. $\mathrm{OH}^{-}$

## Statement

Group 1A and Ammonium cpds are soluble
Acetates \& Nitrates are soluble
Most Chloride, Bromide \& Iodides are soluble
Most Sulfates are soluble

Most carbonates are INSOLUBLE
Most phosphates are INSOLUBLE
Most sulfides are INSOLUBLE
Most hydroxides are INSOLUBLE

## Exceptions

$\mathrm{AgX}, \mathrm{Hg}_{2} \mathrm{X}_{2}, \mathrm{PbX}_{2}$ $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ $\mathrm{CaSO}_{4}, \mathrm{SrSO}_{4}, \mathrm{BaSO}_{4}$ $\mathrm{Ag}_{2} \mathrm{SO}_{4}, \mathrm{Hg}_{2} \mathrm{SO}_{4}, \mathrm{PbSO}_{4}$

Grp 1A, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
Grp 1A, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
Grp 1A, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
Grp 1A, $\mathrm{Ca}(\mathrm{OH})_{2}$, $\mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{NH}_{4} \mathrm{OH}$

Compounds that dissolve in water are soluble.
Compounds that dissolve only a little are INSOLUBLE
Soluble compounds are Electrolytes or Non-Electrolytes
Electrolytes can be Strong or Weak
Non-Electrolytes form non electrical conducting solutions.

## What is the Solubility of NaBr

$\mathrm{Ba}(\mathrm{OH})_{2}$
Calcium Carbonate

## Molecular and Ionic \& Complete Ionic Equations

Molecular Equation: a chemical reaction in which the reactants and products are written as if they were molecular substances

$$
\begin{aligned}
& \text { Calcium Hydroxide and Sodium Carbonate } \rightarrow \text { Calcium Carbonate (ppt) and Sodium Hydroxide } \\
& \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \quad \rightarrow \quad \mathrm{CaCO}_{3(\mathrm{ppt})} \quad+2 \mathrm{NaOH}
\end{aligned}
$$

Calcium Carbonate (ppt) is used to brighten paper, as Tums Antacid and as a toothpaste abrasive.
Complete Ionic Equation represents each substances by it's predominant form in the reaction mixture and where strong electrolytes are written as separate ions:

$$
\begin{equation*}
\mathrm{Ca}^{+2}+2 \mathrm{OH}^{-}+2 \mathrm{Na}^{+}+\mathrm{CO}_{3}^{-2} \rightarrow \mathrm{CaCO}_{3(\mathrm{ppt})}+2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-} \tag{5-June-08}
\end{equation*}
$$

Net Ionic Equation is an ionic equation where Spectator Ions are removed
Spectator Ion does not take part in the reaction [ is on both sides ]

$$
\begin{equation*}
\mathrm{Ca}^{+2}+\mathrm{CO}_{3}^{-2} \rightarrow \mathrm{CaCO}_{3(\mathrm{ppt})} \tag{5-June-08}
\end{equation*}
$$

EXAMPLE: Calcium Nitrate [ $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ ] and Potassium Carbonate [ $\mathrm{K}_{2} \mathrm{CO}_{3}$ ] give the same Net Ionic Equation - PROVE IT!
The value of the Net Ionic Equation is its GENERALITY.
Do some examples from the table of solubility. Write Net Ionic Equations
Example 4.2
Perchloric Acid [ $\mathrm{HClO}_{4}$ ] and Calcium Hydroxide $\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$ forms water
Acetic Acid [ $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ ] and Sodium Hydroxide [ NaOH ] forms water.

## Exercise 4.2

Nitric Acid [ $\mathrm{HNO}_{3}$ ] and Magnesium Hydroxide [ $\mathrm{Mg}(\mathrm{OH})_{2}$ ] forms water.
Lead Nitrate $\left[\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right]$ and Sodium Sulfate $\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right]$ forms $\mathrm{PbSO}_{4}$ ppt

## Driving Forces in a Chemical Reaction

1. Formation of a precipitate
2. Formation of Water - H2O, such as in an Acid Base Reaction
3. Transfer of electrons - REDOX Reaction
4. Combustion Reaction $-\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
5. Synthesis / Combination $-2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
6. Decomposition $-2 \mathrm{H}_{2} \mathrm{O} \rightarrow$ electrolysis $\rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$

Ch 1045 Ch 4
3 of 11
27-Sep-08 1:52 PM

## Types of Chemical Reactions

1. Precipitation Reactions: mix 2 ionic substances and a solid ionic ppt forms
2. Acid - Base Reactions: Acid reacts with a base - transfer of protons
3. Oxidation - Reduction Reactions: transfer electrons - REDOX
4. Precipitation - a precipitate is an insoluble solid compound formed during a chemical reaction in solution

An Exchange Reaction when written as a molecular reaction appears to involve the exchange of parts between the 2 reactants.

$$
\mathrm{MgCl}_{2}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \text { All but } \mathrm{AgCl} \text { is soluble [ see table ] }
$$

The reaction occurs because the silver chloride is insoluble. Write the Net Ionic If silver chloride was soluble, there would be no reaction.

## Example 4.3

Sodium Chloride and Iron (II) Nitrate $\rightarrow$ ? $\quad$ no $\mathrm{ppt}=\mathrm{nr} \quad$ [ $\mathrm{nr}=$ No reaction ]
Aluminum Sulfate and Sodium Hydroxide $\rightarrow$ ? $\mathrm{ppt}=\mathrm{r} \quad[\mathrm{r}=$ Reaction $]$
See also Concept Check 4.2 on page 136
2. Acid Base

Acids - have a sour taste
Bases - bitter taste and feel soapy
Common Acids and Bases Table 4.2 STUDENTS DO NOT HAVE TO MEMORIZE
Name
Acid Acetic Acid
Acetylsalicylic Acid
Ascorbic Acid
Citric Acid
Hydrochloric Acid
Sulfuric Acid
Base Ammonia
Calcium Hydroxide
Magnesium Hydroxide
Sodium Hydroxide

Formulae
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
$\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$
$\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$
$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$
HCl
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{NH}_{3}\left[\mathrm{NH}_{4} \mathrm{OH}\right]$
$\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Mg}(\mathrm{OH})_{2}$
NaOH

Remarks
Vinegar
Aspirin
Vitamin C
In Lemon Juice
Stomach Acid
Battery Acid
Water solution is a household cleaner
Lime use in construction mortar
Mild of magnesia - antacid
Drain and oven cleaner

Acid Base Indicator is a dye used to distinguish between acidic and basic solutions by means of a color change it undergoes.

Arrhenius Acid is a substance that produces hydrogen ions $\mathrm{H}^{+}$
$\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \quad$ dissolve in water
Arrhenius base is a substance that produces hydroxide ions $\mathrm{OH}^{-}$
$\mathrm{NaOH}->\mathrm{Na}^{+}+\mathrm{OH}^{-} \quad$ dissolve in water

Bronsted Lowry Acid / Base are proton transfers.
Bronsted Lowry Acid: donates a proton to another species in a proton transfer reaction.
Bronsted Lowry Base: Accepts a proton from another species
$\begin{array}{cccccc}\mathrm{NH}_{3} & +\mathrm{H}_{2} \mathrm{O} & \rightarrow & \mathrm{NH}_{4+} & +\mathrm{OH}^{-} \quad \begin{array}{l}\text { Water donates the proton }=\text { acid } \\ \leftarrow\end{array}+\mathrm{H}+ & \text { Ammonia accepts the proton }=\text { base }\end{array}$
$\mathrm{H}^{+}$really exists in solution as ${\mathrm{H} 3 \mathrm{O}^{+}}^{+}$the Hydronium Ion
$\mathrm{HNO}_{3} \rightarrow \mathrm{H}++\mathrm{NO}_{3}{ }^{-}$really is $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}++\mathrm{NO}_{3}{ }^{-}$
Reaction is a transfer of a proton from Nitric Acid to water.
Nitric Acid is the proton donor - the acid
Water is the proton acceptor - base

| Name | $\underline{\text { Acid }}$ | $\underline{\text { Base }}$ |
| :--- | :--- | :--- |
| Arrhenius <br> Bronstead | Produces $\mathrm{H}^{+}$ | Pronates $\mathrm{H}^{+}$ |$\quad$ Accepts $\mathrm{H}^{+}$

## STUDENTS NEED TO KNOW THESE

Strong Acid - completely ionizes in water
Weak Acid - partly ionizes in water, a weak electrolyte
Strong Base - exists in water entirely as ions, one of which is OH
Weak Base - partially ionizes in water, weak electrolyte
Common Strong

| Acids | Base |
| :--- | :--- |
| $\mathrm{HClO}_{4}$ | LiOH |
| $\mathrm{H}_{2} \mathrm{SO}_{4}$ | NaOH |
| HI | KOH |
| HBr | $\mathrm{Ca}(\mathrm{OH})_{2}$ |
| HCl | $\mathrm{Sr}(\mathrm{OH})_{2}$ |
| $\mathrm{HNO}_{3}$ | $\mathrm{Ba}(\mathrm{OH})_{2}$ |

Neutralization Reaction: reaction of an acid and a base that results in an ionic compound and possibly water. The ionic compound produced is called a salt
$2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{HCN}+\mathrm{KOH} \rightarrow \mathrm{KCN}+\mathrm{H}_{2} \mathrm{O}$
Write Molecular, Ionic and Net Ionic
Water product exception is $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \quad$ Do Net Ionic

## Example 4.5

Write all equation for the Neutralization of Nitrous $\mathrm{Acid}_{\mathrm{HNO}_{2}}$ and Sodium Hydroxide. Show H+ Xfer

Polyprotic Acid is an acid that yields two or more acidic hydrogen's per molecule

| $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaOH} \rightarrow$ | $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ | + | $\mathrm{H}_{2} \mathrm{O}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NaOH} \rightarrow$ | $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ | + | $2 \mathrm{H}_{2} \mathrm{O}$ |
| $\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{NaOH} \rightarrow$ | $\mathrm{Na}_{3} \mathrm{PO}_{4}$ | + | $3 \mathrm{H}_{2} \mathrm{O}$ |

## Exercise 4.6

Write Mole, Ionic and Net ionic for successive neutralization of Sulfuric Acid and Potassium Hydroxide

## Acid Base reactions with Gas Formation

$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Carbonic Acid
Reaction of a carbonate and an acid to yield a gas is a test for carbonate minerals.
Sulfites behave the same as carbonates
Write the NET IONIC equation for the above reaction?
Sodium Sulfite acid sulfur dioxide
$\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{HCl} \rightarrow \mathrm{SO}_{2}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Sodium Sulfide

```
\(\mathrm{Na}_{2} \mathrm{~S}+\mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{Na}_{2} \mathrm{SO}_{4}\)
\(\mathrm{ZnS}+\mathrm{HCl} \rightarrow\) ?
```


## Generalize Formula

$\mathrm{MOH} \rightarrow \mathrm{M}^{+}+\mathrm{OH}^{-} \quad$ in water
$\mathrm{HA}+\mathrm{H} 2 \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
$\mathrm{H}_{2} \mathrm{~A}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HA}^{-}$
Ionic - Table 4.4 Ionic Compounds that Evolve Gas with an Acid
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H} 2 \mathrm{O}+\mathrm{CO}_{2} \quad \mathrm{CO}_{3}^{-2} \rightarrow \mathrm{CO}_{2}$

$$
\begin{array}{ll}
\mathrm{Na}_{2} \mathrm{SO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} & \mathrm{SO}_{3}^{-2} \rightarrow \mathrm{SO}_{2} \\
\mathrm{Na}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{~S} & \mathrm{~S}^{-2} \rightarrow \mathrm{H}_{2} \mathrm{~S}
\end{array}
$$

3. Oxidation Reduction Reactions [ Redox] are reactions that involve transfer of electrons form one species to another or in which the oxidation number changes.

An Iron nail in Copper (II) Sulfate: $\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$
The Net Ionic is

$$
\begin{array}{ll}
\mathrm{Fe}+\mathrm{Cu}^{+2} & \rightarrow \mathrm{Fe}^{+2}+\mathrm{Cu} \\
\mathrm{Fe}^{0} \\
\mathrm{Cu}^{+2}+2 \mathrm{e}^{-} & \rightarrow \mathrm{Fe}^{+2}+2 \mathrm{e}^{-}
\end{array}
$$

Oxidation Number is the actual charge of the atom if it exists as a monoatomic ion - or hypothetical charge. The Oxidation Number: $\quad$ Rules 4 Assigning Oxidation Numbers - Table 4.5

1. an atom / element is ZERO. $\quad \mathrm{Na}=$ Metallic Sodium $=0$
2. of an atom that exists in a compound as a monoatomic ion equals the charge on that ion.

$$
\mathrm{NaCl} \mathrm{Na}=+1, \mathrm{Cl}=-1
$$

3. Oxygen in a compound has an Oxidation Number of -2. e.g. In $\mathrm{SO}_{2}, \mathrm{O}=-2$ each, $\mathrm{S}=+4$

Exception is $\mathrm{H}_{2} \mathrm{O}_{2}$ where $\mathrm{H}=+1$ and $\mathrm{O}=-1$ each
4. Hydrogen in a compound has an Oxidation Number of +1

Exception is when combined with a metal to form a Hydride $\mathrm{NaH} \quad \mathrm{Na}=+1, \mathrm{H}=-1$
5. Halogens in a compound have an Oxidation Number of -1 .

Except when combined with a halogen above it in the PT. [ Never saw one yet thought! ] Or when combine with Oxygen.
6. The sum of the Oxidation Numbers in a compound is ZERO.

The sum of the Oxidation Numbers in a polyatomic ion equals it's charge.
Oxidation Numbers $>+6$ or $<-4$ are probably in error.

Ox Number \begin{tabular}{c}
2 Ca <br>
0

 

O <br>
O

$\quad \rightarrow$

2 CaO <br>
0

$\quad$

Calcium is Oxidized <br>
Oxygen is Reduced
\end{tabular}

Calcium goes from an Oxidation Number of 0 to +2
Oxygen goes from an Oxidation Number of 0 to -2
Problem: Determine the Oxidation Number of Chlorine in:
A. Perchloric Acid $\mathrm{HClO}_{4}$
$\mathrm{H}=+1, \mathrm{O}=4 *-2$
$\mathrm{Cl}=+7$
B. Chlorate Ion
$\mathrm{ClO}_{3}{ }^{-}$
$\mathrm{O}=3 *-2$, Net Charge $=-1$
$\mathrm{Cl}=+5$

Half Reactions is one of the two parts of a Redox Reaction.
One part has loss of e- or gain of oxidation number, one gain of e- or decrease of oxidation number.
An Iron nail in Copper (II) Sulfate: $\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$
The Net Ionic is $\mathrm{Fe}+\mathrm{Cu}^{+2} \rightarrow \mathrm{Fe}^{+2}+\mathrm{Cu}$
OXIDATION $\mathrm{Fe}^{0} \quad \rightarrow \mathrm{Fe}^{+2} \quad+2 \mathrm{e}^{-} \quad$ electrons lost by Fe
REDUCTION $\mathrm{Cu}^{+2}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}^{0} \quad$ gained by $\mathbf{C u}$
Oxidation is a LOSS OF ELECTRONS. Reduction is a GAIN OF ELECTRONS
Oxidation Agent - a compound that oxidizes another compound
Reducing Agent - a compound that reduces another compound


## Common Oxidation - Reduction Reactions

1. Combination
2. Decomposition
3. Displacement
4. Combustion
5. Combination Reaction is one in which two substances combine to form a third compound

$$
\begin{array}{lll}
2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl} & \text { Sodium and Chlorine } \\
2 \mathrm{Sb}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{SbCl}_{3} & \text { Antimony and Chlorine } \\
\mathrm{CaO}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3} & \begin{array}{l}
\text { There is no change in Oxidation Numbers } \\
\text { But this is still a Combination Reaction }
\end{array}
\end{array}
$$

2. Decomposition Reaction is one in which a single compound reacts to give two or more substances. Check Oxidation Number to see if they are Redox - some are not!

| $2 \mathrm{HgO} \xrightarrow{\text { Heat }} 2 \mathrm{Hg}+\mathrm{O}_{2}$ | Heat Mercury (II) Oxide |
| :---: | :--- | :--- |
| $2 \mathrm{KClO}_{3} \xrightarrow{\text { Heat }} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$ | Heat Potassium Chlorate with MnO2 Cat <br> $\mathrm{MnO}_{2} \mathrm{Cat}$ |
| $\mathrm{CaCO}_{3} \xrightarrow{\text { Reat }} \mathrm{CaO}+\mathrm{CO}_{2}$ | Head Calcium Carbonate not Redox |

3. Displacement or Single Displacement is were an Element reacts with Compound, displacing an element from the compound. If an element is involved, the reaction is a Redox.

$$
\begin{array}{lll}
\mathrm{Cu}+2 \mathrm{AgNo}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag} \\
\mathrm{Cu} & +2 \mathrm{Ag}+\rightarrow \mathrm{Cu}^{+2}+2 \mathrm{Ag} & \text { Net Ionic shows electron transfer } \\
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} & \text { Zinc and } \mathrm{HCl} \text { yields Hyrdorgen Gas } \\
\mathrm{Zn}+2 \mathrm{H}^{+}->\mathrm{Zn}^{+2}+\mathrm{H}_{2} & \text { Net Ionic }
\end{array}
$$

## Activity Series of the Elements [ Table 4.6 ]

$$
\begin{aligned}
& \mathrm{Li}>\mathrm{K}>\mathrm{Ba}>\mathrm{Ca}>\mathrm{Na}>\quad \text { Reacts violently with water to give } \mathrm{H}_{2} \\
& \mathrm{Mg}>\mathrm{Al}>\mathrm{Zn}>\mathrm{Cr}>\mathrm{Fe}>\mathrm{Cd}>\quad \text { Reacts slowly with water to give } \mathrm{H}_{2} \\
& \mathrm{Co}>\mathrm{Ni}>\mathrm{Sn}>\mathrm{Pb} \\
& \mathrm{H} 2>\mathrm{Cu}>\mathrm{Hg}>\mathrm{Ag}>\mathrm{Au} \quad \text { Do not react with acids to give } \mathrm{H}_{2}
\end{aligned}
$$

4. Combustion Reactions a substance reacts with oxygen usually with the rapid release of heat to produce a flame.

$$
\begin{aligned}
& \text { Butane } \\
& 2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}+\text { Heat }
\end{aligned}
$$

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \quad \text { Metals burn in air, iron rusts in oxygen }
$$

## Balancing Redox Equations

$1^{\text {st }}$ Glance $\quad \mathrm{Zn}+\mathrm{Ag}+\rightarrow \mathrm{Zn}^{+2}+\mathrm{Ag}$
But the charge is not balanced. Do it by Half Reactions
$\begin{array}{rllc}\mathrm{ON} & 0 \\ & \mathrm{Zn} & +1 \\ \mathrm{Ag}^{+} & \rightarrow & +2 \\ \mathrm{Zn}+2 & + & 0 \\ & \mathrm{Ag}\end{array}$

$$
\begin{array}{llll}
\mathrm{Zn} \\
\mathrm{Ag}^{+}+1 \mathrm{e}^{-} \xrightarrow{\rightarrow} \mathrm{Zn}+2 \mathrm{Ag}^{-} & \begin{array}{l}
\text { Oxidation } \\
\text { Reduction }
\end{array}
\end{array}
$$

Balance the electrons

| Zn | $\rightarrow \mathrm{Zn}^{+2}$ | $2 \mathrm{e}^{-}$ | Oxidation |  |
| :--- | :--- | :--- | :--- | :--- |
| $2 \mathrm{Ag}^{+}+2 \mathrm{e}^{-}$ | $\boldsymbol{\rightarrow}$ | 2 Ag |  | Reduction |
| $\mathbf{Z n}+\mathbf{2 ~ A g}$ | $\boldsymbol{\rightarrow}$ | $\mathbf{2 A g}+\mathbf{Z n}^{+\mathbf{2}}$ | BALANCE ELECTRONS |  |


| 0 |  |
| :--- | :--- |
| Mg | $+\mathrm{N} 2 \rightarrow$+2 -3 <br> $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ $\quad$ Magnesium metal and Nitrogen Gas react |

$\begin{array}{ll}\mathrm{Mg} \\ \mathrm{N}_{2}+6 \mathrm{e}^{-} \rightarrow \mathrm{Mg}^{+2}+2 \mathrm{e}^{-} & \begin{array}{l}\text { Oxidation - Need } 3 \text { of these } \\ \text { Reduction }\end{array}\end{array}$
$3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow 3 \mathrm{Mg}^{+2}+2 \mathrm{~N}^{-3}\left[+/-6 \mathrm{e}^{-}\right]$BALANCE ELECTRONS

## Molar Concentrations

Molar Concentration or Molarity [ M ] is the number of moles of solute dissolved in one liter of solution

## Molarity $=\mathbf{M}=$ Moles of Solute $/$ Liters of Solution $\quad \mathbf{M}=\mathrm{g} / \mathrm{Mw} /$ Liter

$0.15 \mathrm{M} \mathrm{NH}_{3}$ contains 0.15 Moles of $\mathrm{NH}_{3}$ per liter
Show calculation of Mw

Problems: $\quad 0.38 \mathrm{~g}$ of $\mathrm{NaNO}_{3}$ is added to 50.0 ml of water. What is the molarity? $=0.089 \mathrm{M}$
0.0678 g of NaCl is added to 25.0 ml of water. What is the molarity?

An experiment call for using 0.184 g of NaOH . How many mls of 0.150 M NaOH will be needed? $\quad 30.7 \mathrm{~mL}$

How many ml of 0.163 M NaCl is needed to give 0.0958 g of NaCl ?
How many moles and grams of NaCl is need to be put in a 50.0 mL flask to give 0.15 M .
Diluting Solutions
Moles ${ }^{1}$ * Volume $^{1}=$ Moles $^{2}$ * Volume $^{2}$
[ 5-June-08 ]
$28.0 \% \mathrm{NH}_{3}$ is $1.48 \mathrm{M}^{2}$ in $\mathrm{NH}_{3}$. Want 100 ml of $1.00 \mathrm{M} \mathrm{NH}_{3}$.

$$
\text { Volume }^{1}=\text { Moles }^{2} * \text { Volume }^{2} / \text { Moles }^{1}=1.00 \mathrm{M} \times 100 \mathrm{~mL} / 14.8 \mathrm{M}=6.76 \mathrm{~mL}
$$

Quantitative Analysis is the determination of the amount of a substance or species present in a material
Gravimetric Analysis is a type of Quantitative Analysis where the amount of a species in a material is determined by converting the species to a product that can be isolated and weighted [ form a precipitate ]. For Gravimetric Analysis, a precipitate is usually generated and weighed and then the amount of starting material is determined.

## Lead in drinking water.

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}+\underset{\mathrm{Pb}=207.2 \mathrm{~g} / \mathrm{M}}{\mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \underset{303.26 \mathrm{~g} / \mathrm{M}}{\rightarrow} \quad 2 \mathrm{NaNO}_{3} \quad+\underset{3 \mathrm{PbSO}}{4} \mathrm{ppt}} \quad \text { separate by filtration }
$$

1.000 L of water was reacted with Xcs Sodium Sulfate. The mass of Lead (II) Sulfate was 229.8 mg . What is the concentration of Lead in the water?
$\mathrm{Pb}=207.2 \mathrm{~g} / \mathrm{M} \quad$ Lead in Lead Sulfate $=207.2 \mathrm{~g} / \mathrm{M} / 303.26 \mathrm{~g} / \mathrm{M} * 100 \%=68.32 \%$
1.000 L contains $68.32 \% * 229.8 \mathrm{mg} \mathrm{PbSO} 4=157.0 \mathrm{mg}$ of Pb

Volumetric Analysis is a method of analysis based on Titration
Titration is a procedure for determining the amount of Substance A by adding a carefully measured volume of a solution with known concentration of $B$ until the reaction of $A$ and $B$ is JUST COMPLETE.

| $\mathbf{N a O H}$ |  |
| :--- | :--- | :--- |
| 4.47 ml of. | $\mathbf{H C l}$ |
| 0.207 M NaOH |  |

Molarity $=$ Moles $/$ Volume Moles of $\mathbf{N a O H}$

Therefore: Moles $=$ Volume * Molarity $=\quad$ Moles of HCl

| Volume in L |  |
| :--- | :---: |
| $\frac{1 \text { Liter }}{1000 \mathrm{ml}}$ |  |$\quad$| Molarity |
| :--- |
| $\frac{4,47 \mathrm{ml}}{1 \text { Liter }}$ |$\quad \frac{0.207 \mathrm{M} \mathrm{NaOH}}{1 \mathrm{M}} * \frac{36.5 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{M} \mathrm{HCl}} * \frac{1 \mathrm{M} \mathrm{HCl}}{1 \mathrm{M} \mathrm{NaOH}}=\underline{\mathbf{0 . 0 3 3 8} \mathbf{g}}$

Problem: 5.00 g of Vinegar is titrated with 39.1 ml 0.108 M NaOH . What is the Mass \% of acetic acid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ in the vinegar
[ 5-June-08


$$
0.0391 \mathrm{~L} \mathrm{NaOH} * \frac{0.108 \mathrm{M} \mathrm{NaOH}}{1 \mathrm{~L}} * \frac{1 \mathrm{~mole} \mathrm{HC}_{2} \underline{\mathrm{H}}_{3} \underline{\mathrm{O}}_{2}}{1 \mathrm{~mole} \mathrm{NaOH}} * \frac{60.05 \mathrm{~g} \mathrm{HC}_{2} \underline{\mathrm{H}}_{3} \underline{\mathrm{O}}_{2}}{1 \mathrm{O}_{2} \mathrm{~mol} \mathrm{HC}_{2} \underline{\mathrm{H}}_{3} \underline{\mathrm{O}}_{2}}=0.254 \mathrm{~g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
$$

Mass Percent of acedic acid in the vinegar $=100 \% * 0.254 \mathrm{~g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / 5.00 \mathrm{~g}$ vinegar $=5.07 \%$
Book 8th ed Homework do p 169, problem 477

## Practice Questions:

Review Questions p 165
$\begin{array}{llllll}4.2 & 4.3 & 4.5 & 4.9 & 4.10 & 4.11\end{array}$
Conceptual Problems p 165-166
$\begin{array}{lll}4.15 & 4.18 & 4.21\end{array}$
Practice Problems p 166-...

| Solubility | 4.23 | 4.24 |
| :--- | :--- | :--- |

Ionic Equations 4.27
Precipitation 4.31
Strong / Weak Acids / Bases 4.354 .36
$\begin{array}{lll}\text { Neutralization } & 4.37 & 4.41\end{array}$
Reactions Evolving a Gas 4.45
$\begin{array}{llll}\text { Oxidation Numbers } & 4.49 & 4.51 & 4.53\end{array}$
Balancing Redox 4.59
$\begin{array}{lllll}\text { Molarity } & 4.61 & 4.63 & 4.65 & 4.73\end{array}$
Gravimetric $4.77 \quad 4.78$ [ Calculation of Mass Percent will not be on a test, but calculation of the amount of a starting material from the amount of a ppt will be]
Volumetric Analysis
$4.83 \quad 4.85$
$\begin{array}{lllllll}\text { General Problems } & 4.89 & 4.99 & 4.101 & 4.105 & 4.109\end{array}$
$\begin{array}{llllll}\text { Cumulative Skills } & 4.121 & 4.127 & 4.129 & 4.139\end{array}$

